Functional Inequalities About Geometric Means And Arithmetic Means

Pham Thi Linh, Nguyen Thi Thu Hang, Pham Hong Truong, Tran Thi Tiep
1, 2, ,3,4 Thai Nguyen University of Economics and Business Admistration, ThaiNguyen, Vietnam.
Corresponding Author: Pham Thi Linh

ABSTRACT: Functional inequalities are very difficult. Many authors studied functional inequatlities. In this article, we would like to look at some functional inequality problems about arithmetic means and geometric means.
KEYWORDS: Functional inequalities, Arithmetic means, Geometric means.

I. INTRODUCTION

In this paper, we would like to look at some expressions
Arithmetic mean of argument
$\frac{x+y}{2}, \forall x, y \in \square$;
Geometric mean of argument
$\sqrt{x y}, \forall x, y \in \square^{+}$;
and
Arithmetic mean of argument

II. ARITHMETIC MEANS AND
 GEOMETRIC MEANS

Problem 1. Let $\alpha, \beta \in \square$. Determiner all functions $f: \square \rightarrow \square$ such that

$$
\begin{equation*}
f(1)=\beta ; f(t) \geq \alpha t+\beta ; \forall t \in \square \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \geq \frac{f(x)+f(y)}{2} ; \forall x, y \in \square . \tag{2}
\end{equation*}
$$

Solution. In (2), let $x=t, y=-t$, then

$$
\begin{aligned}
\beta & =f(0) \\
& =f\left(\frac{t+(-t)}{2}\right)
\end{aligned}
$$

$\frac{f(x)+f(y)}{2}, \forall x, y \in \square ;$
Geometric mean of argument
$\sqrt{f(x) f(y)}, \forall x, y \in \square^{+}$.
To solve functional inequlity problems, we use substitution method. We usually substitute special values

+) Let $x=t$ such that $f(t)$ appears much in the equation.
$+) x=t, y=v$ interchange to refer $f(t)$ and $f(v)$.
+) Let $f(0)=v, f(1)=v, \ldots$
$+)$ If f is surjection, exist $t: f(t)=0$ or $t: f(t)=1$.
Choice x, y to destroy $f(g(x, y))$ in the equation. The function has x, we show that it is injective or surjection.
+) To occur $f(x)$.
+) $f(x)=f(y)$ for all $x, y \in X$. Hence $f(x)=$ const for all $\quad x \in X$.

$$
\geq \frac{f(t)+f(-t)}{2}
$$

$$
\geq \frac{(\alpha t+\beta)+(-\alpha t+\beta)}{2}
$$

$$
=b, \forall t \in \square
$$

Then $f(t) \equiv \alpha t+\beta$. We can check directly

$$
f(t) \equiv \alpha t+\beta \text { satisfies (1) and (2). }
$$

There for, $f(t) \equiv \alpha t+\beta$.
Corollary 1. Determiner all functions $f: \square \rightarrow \square$ such that

$$
\begin{equation*}
f(0)=0 ; f(t) \geq 0 ; \forall t \in \square \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \geq \frac{f(x)+f(y)}{2} ; \forall x, y \in \square, \tag{4}
\end{equation*}
$$

is $f(x) \equiv 0$.
Problem 2. Let $\alpha, \beta \in \square^{+}$. Determiner all functions $f: \square \rightarrow \square$ such that

$$
\begin{equation*}
f(1)=\alpha ; f(t) \geq \alpha+\beta \ln t ; \forall t \in \square^{+} ; \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
f(\sqrt{x y}) \geq \frac{f(x)+f(y)}{2} ; \forall x, y \in \square^{+} . \tag{6}
\end{equation*}
$$

Solution. Setting $x=t, y=\frac{1}{t}(t>0)$, and by
(6), we get

$$
\begin{aligned}
\alpha & =f(1) \\
& =f\left(\sqrt{t \times \frac{1}{t}}\right) \\
& \geq \frac{f(t)+f\left(\frac{1}{t}\right)}{2} \\
& \geq \alpha .
\end{aligned}
$$

Then $f(t) \equiv \alpha+\beta \ln t$. We can check directly $f(t) \equiv \alpha+\beta \ln t$ satisfies (5) and (6).
There for,

$$
f(t) \equiv \alpha+\beta \ln t .
$$

Corollary 2. $f(x)$ satisfies

$$
\begin{equation*}
f(1)=1 ; f(t) \geq 1 ; \forall t \in \square^{+} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
f(\sqrt{x y}) \geq \frac{f(x)+f(y)}{2} ; \forall x, y \in \square^{+} . \tag{8}
\end{equation*}
$$

is $f(x) \equiv 1$.
Problem 3. Determiner all functions $f: \square^{+} \rightarrow \square^{+}$such that
$f(1)=0 ; \quad(9)$
and

$$
\begin{array}{r}
f(\sqrt{x y}) \geq \sqrt{\frac{[f(x)]^{2}+[f(y)]^{2}}{2}} ; \\
\forall x, y \in \square^{+} \tag{10}
\end{array}
$$

Solution.

By assumption, we have $f(x) \geq 0, \forall x \in \square^{+}$.
Since $\quad x>0, y>0$, we are setting $x=e^{u}, y=e^{v}, u, v \in \square$.

Then
$g(u) \geq 0, \forall u \in \square$.
In (8), we have
$g\left(\frac{u+v}{2}\right) \geq \frac{g(u)+g(v)}{2}, \forall u, v \in \square$.
By Corollary 1, we have $g(u) \equiv 0, \forall u \in \square$.
Then $f(x) \equiv 0$.

We can check all such functions satisfy (7) and (8). There for,

$$
f(t) \equiv 0 .
$$

Problem 4. Let $k>1$. Determiner all functions $f: \square^{+} \rightarrow \square^{+}$such that
$f(0)=0 ; \quad(11)$
and

$$
\begin{aligned}
& f(\sqrt{x y}) \geq \sqrt[k]{\frac{[f(x)]^{k}+[f(y)]^{k}}{2}} ; \\
& \forall x, y \in \square^{+}
\end{aligned},(12)
$$

Solution.

By assumption, we have $f(x) \geq 0, \forall x \in \square^{+}$. we have:
$(12) \Leftrightarrow[f(\sqrt{x y})]^{k} \geq \frac{[f(x)]^{k}+[f(y)]^{k}}{2} ;$ $\forall x, y \in \square$.

Setting

$$
g(x)=[f(x)]^{k} \geq 0,
$$

We have
$g(\sqrt{x y}) \geq \frac{g(x)+g(y)}{2} ; \forall x, y \in \square$.
By Corollary 1, we have $g(x) \equiv 0$. Then $f(x) \equiv 0$.
We can check all such functions satisfy (11) and (12).

There for, $f(t) \equiv 0$.

$$
f(t) \equiv 0 .
$$

III. CONCLUSION

In this paper, we establish some problems about arithmetic means and geometric means. They are very good for teachers and students.

REFERENCES

[1]. Ching, I-H., 1973, "On Some Functional Inequalities," Equations Mathematical Paper No. 9.
[2]. Christopher, G-S., 2000, "Functional equations and how to solve them," Springer.
[3]. Kannappan, P-L., 2000, "Functional Equations And Inequalities with applications," Springer, Monographs In Mathematics.

