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ABSTRACT: Functional inequalities are very 

difficult. Many authors studied functional 

inequatlities. In this article, we would like to look at 

some functional inequality problems about 

arithmetic means and geometric means.  
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I. INTRODUCTION 
In this paper, we would like to look at 

some expressions 
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 To solve  functional inequlity problems, we 

use substitution method. We usually substitute 

special values 

+) Let  such that  appears much in the 
equation. 

+)  interchange to refer  and .  

+) Let ,… 

+) If  is surjection, exist  or . 

Choice  to destroy  in the equation. 

The function has , we show that it is injective or 
surjection.  

+) To occur .  

+)  for all x, y ∈ X. Hence 

 for all .  

II. ARITHMETIC MEANS AND 

GEOMETRIC MEANS 

 

Problem 1. Let ,   .  Determiner all 

functions :f   such that 
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Solution. In (2), let ,x t y t   ,  then 
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Then   .f t t    We can check directly 

 f t t    satisfies (1) and (2).  

There for,   .f t t    

Corollary 1.  Determiner all functions 

:f   such that 
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is   0 .f x 

  

 

Problem 2. Let , 


 .  Determiner all 

functions :f   such that 

     1 ; ln ; ; 5f f t t t  
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Solution. Setting  
1

, 0x t y t
t

   ,  and by 

(6),  we get 
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Then   ln .f t t    We can check directly  

  lnf t t  
 
satisfies (5) and (6).  

There for, 

   ln .f t t     

Corollary 2.  f x  satisfies  

     1 1; 1; ; 7f f t t


      

and 
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Problem 3. Determiner all functions 

:f
 
  such that 

   1 0; 9f    

and 
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Solution.  

By assumption, we have   0, .f x x


  

 
Since 0 , 0 ,x y 

 

 we are setting 
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Then     

 

  0, .g u u  

 In (8), we have  
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By Corollary 1, we have   0, .g u u    

Then   0 .f x   

 

We can check all such functions satisfy (7) and (8).  

There for, 

   0 .f t    

 

Problem 4. Let 1 .k   Determiner all functions 

:f
 
  such that 

   0 0; 11f    

and 
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Solution.  

By assumption, we have   0, .f x x


  

 

we 

have: 
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Setting 

    0 ,
k

g x f x   
  

We have
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By Corollary 1, we have   0 .g x   Then 

  0 .f x   

We can check all such functions satisfy (11) and 

(12).  
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There for,   0 .f t   

   0 .f t    

 

III. CONCLUSION 
In this paper, we establish some problems 

about arithmetic means and geometric means. They 

are very good for teachers and students. 
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